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ABSTRACT

We present a novel method for computer aided early detec-
tion of liver metastases. The method used fMRI-based statis-
tical modeling to characterize colorectal hepatic metastases
and follow their early hemodynamical changes. Changes in
hepatic hemodynamics were evaluated from T2*-W fMRI im-
ages acquired during the breathing of air, air-CO2, and car-
bogen. A classification model was built to differentiate be-
tween metastatic and healthy liver tissue. The model was
constructed from 128 validated fMRI samples of metastatic
and healthy mice liver tissue using histogram-based features
and SVM classification engine. The model was subsequently
tested with a set of 32 early, non-validated fMRI samples. Our
model yielded an accuracy of 84.38% with 80% precision.

Index Terms— Liver metastasis, fMRI analysis, early de-
tection, statistical analysis, computer-aided diagnosis

1. INTRODUCTION

The liver is the second most commonly involved organ in
metastatic disease, after the lymph nodes. It is the most com-
mon site of visceral metastases for colorectal carcinoma pa-
tients, and hepatic metastases are a frequent clinical compli-
cation. Some focal lesions may be surgically resectable or
treated by means of ablation techniques. Since liver func-
tion tests in patients with liver metastases tend to be insensi-
tive and non-specific, the disease is usually diagnosed at later
stages. Despite the availability of numerous possible treat-
ments, hepatic metastases are difficult to eradicate because
of their late discovery. Early and accurate detection of these
lesions is recognized as having the potential of improving sur-
vival rates and reducing treatment morbidity.
A key observation is that there are changes in liver blood

supply that can serve as an indicator for the presence of hep-
atic metastases [1]. It is well known that, whereas normal
liver is supplied predominantly by the portal vein, in patients
with overt colorectal liver metastases, a higher proportion of

liver blood flow is derived from the hepatic artery. Thus, by
monitoring hemodynamical changes, earlier detection of hep-
atic metastases may be feasible.
Imaging plays a central role in the early diagnosis of liver

metastases. The association between hepatic metastases and
altered liver blood flow has been demonstrated recently by
dynamic scintigraphy [1], by Doppler sonography [2, 3], by
dynamic contrast enhanced CT [4] and more recently by dy-
namic contrast enhanced MRI [5]. Measurements using MRI
can potentially overcome limitations posed by other imag-
ing techniques, such as poor spatial resolution in radionuclide
studies, lack of reproducibility in Doppler US and radiation
exposure using CT. Currently, acquisition of perfusion images
in both CT and MRI require the intravenous administration of
a contrast agent. Good separation of arterial from portal phase
requires high temporal resolution which enforces reduction of
the spatial resolution.
In a previous work [6], we demonstrated the feasibil-

ity of fMRI with hypercapnia and hyperoxia for monitoring
changes in liver perfusion and hemodynamics without the
need of a contrast agent administration. Using this method
we characterized colorectal hepatic metastases and were able
to follow their early hemodynamical changes [7, 8]. Since our
method detects steady state levels without the use of contrast
agent there is no need to compromise the spatial resolution
and image quality. Therefore, we expect to be able to detect
smaller lesions. However, the manual analysis of the hemo-
dynamical maps produced by this method turned out to be a
difficult, time consuming, and potentially unreliable task.
In this work we present a machine learning approach for

the automatic detection of colorectal hepatic metastases based
on their hemodynamical changes. First, we construct a sta-
tistical model describing the hemodynamical changes of col-
orectal hepatic metastases from samples obtained at advanced
phase of metastases growth, where the metastases were visi-
ble in the anatomical MRI. Then, new samples obtained at
the earlier phase of metastases growth, where the metastases
are not yet visible in the anatomical image, are classified ac-
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Fig. 1. (a) Maps of mean signal intensity values for each
pixel acquired during the different inhaled gases (S̄air, S̄co2

and S̄o2
) calculated for each gas from several repeats; (b,c)

Percentage of change of fMRI signal induced by hypercapnia
(ΔSco2

, b) and hyperoxia (ΔSo2
, c) as computed with Eqs.

1 and 2. Data is presented as color maps as indicated in the
color bars.

cording to the model. Suspected areas of metastases are then
enhanced in the fMRI images. We expect that this method
will help radiologists to highlight undetectable metastases in
a much earlier stage, with increased diagnostic specificity and
sensitivity.

2. METHOD

2.1. MRI data acquisition

The input data consists of four types of images: anatomical
MRI images, and three types of fMRI images of the hepatic
hemodynamics. They are all acquired following the proto-
col described in [6]. The fMRI images are acquired during
the breathing of air, air-CO2 (5% CO2), and carbogen (95%
oxygen; 5% CO2). Maps of mean signal intensity values
for each pixel during the different inhaled gases are calcu-
lated from 6 repeats for each gas. (Fig. 1a). The percentage
of change of fMRI signal intensity induced by hypercapnia
(ΔSco2

, Fig. 1b) and hyperoxia (ΔSo2
, Fig. 1c) are calculated

using the following equations:

ΔSco2
=

S̄co2
− S̄air

S̄air

× 100 (1)

ΔSo2
=

S̄o2
− S̄co2

S̄co2

× 100 (2)
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Fig. 2. Method flowchart: model generation and early classi-
fication.

2.2. Automatic classification

We use a machine-learning approach for the automatic classi-
fication of metastases using these images. Our approach con-
sists of two stages. In the first stage we construct a statistical
model from a training dataset of anatomical and fMRI im-
ages with confirmed tumors. In the second stage, we use this
model to classify new fMRI images obtained at earlier phase
of metastases growth. Fig. 2 summarizes in a flowchart the
steps of each stage, which we explain in detail below.

2.3. Model generation

The input training set for model generation consists of a series
of datasets from live subjects with and without metastases.
Each dataset consists of an anatomical MRI image as well as
ΔSco2

and ΔSo2
maps computed with Eqs. 1 and 2.

For eachΔSco2
andΔSo2

image map, one or more square
Regions of Interest (ROIs) containing tumors are manually
identified according to the anatomical image. Each region is
described by a features vector consisting of two histogram
vectors, one for each map. Each histogram vector is the nor-
malized one-dimensional histogram of the intensity values in
the ROI with a fixed number of bins of equal size. These
features vectors show better performance that the actual pixel
vectors, as they can cope with varying tumor sizes.
Each region is classified by expert observer as either

healthy (Fig. 3a) or metastasis (Fig. 3d) according to the
anatomical MRI image. The corresponding features-vectors
are then computed from theΔSco2

andΔSo2
maps (Fig. 3b,c

for healthy tissue, and Fig. 3e,f for confirmed metastatic
tissue).
A Support Vector Machine (SVM) classification engine

[9] trained with this training set is then applied. It uses a gen-
eralized Radial Basis Function (RBF) kernel with the Earth
Movers Distance (EMD) [10] as the affinity measure:

Kemd = e−emd(h1,h2) (3)
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where emd is the EMD distance between the two histograms
(h1, h2). Since the histograms are one-dimensional, the EMD
distance is the L1 norm between the cumulative histograms.

2.4. Early classification

The ΔS maps of additional subjects are acquired during the
early metastases growth phase, which no metastases are visi-
ble in the anatomical images (T2W). The ROIs and their cor-
responding features-vectors are computed as described in the
model generation phase. The features-vectors are then classi-
fied based on the generated metastasis classification model.

2.5. Diagnosis support system

An automatic diagnosis support system for metastatic re-
gions enhancement in fMRI images uses the proposed model.
For each set of fMRI maps, (ΔSco2

and ΔSo2
), the system

identifies regions whose features-vectors are similar to the
metastases samples in the model, and then enhances them
for improved visualization. The region search proceeds as
follows. First, the images are thresholded with an experimen-
tally set value to reduce the number of suspected pixels. Then,
for each pixel above the threshold value, several features-
vectors of its neighborhoods are build. Neighborhoods of
various sizes are used to facilitate the detection of suspected
regions in different stages of the metastasis development. The
features-vectors are then classified with the generated model.
Finally, the suspected regions are marked, so that the radiol-
ogist can then carefully evaluate these regions and decide on
the appropriate follow-up.

3. EXPERIMENTAL RESULTS

3.1. MRI data acquisition

We performed an animal study on CB6F1 mice that under-
went splenic injection with CT-26 colon cancer cells (104

cells/mouse in 0.3ml) to generate metastases. The spleen was
removed 5 minutes later. In this model, 1-5 hepatic nod-
ules were detected 13-15 days after cell inoculation by using
T2W fast SE. Metastases progression was monitored twice a
week by MRI. When metastases reached to large size, an-
imals were sacrificed, and livers were taken for histology.
MRI scans were performed on a 4.7T Bruker Biospec spec-
trometer with a bird cage coil. Metastases assessment was
done using T2-weighted fast SE images (TR/TE=2000/40ms).
Changes in hepatic hemodynamics were evaluated using T2*-
weighted GE (TR/TE=147/10ms). Images were acquired dur-
ing breathing of air, air-CO2 (5% CO2), and carbogen (95%
oxygen; 5% CO2). A detailed description of the acquisition
protocol is provided in [6].
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Fig. 3. Representative T2W anatomical images (left), ΔSco2

maps (center) and ΔSo2
maps (right) of mice livers Healthy

liver (a-c); Confirmed metastatic region (d, yellow circle)
from late phase growth (21 days following cell injection)
that was taken for model generation (d-f); Suspected area (g,
yellow arrow) from early phase growth (14 days following
cell injection) that was taken for classification. Note typical
changes in the corresponding ΔS maps (encircled area in h
and i).

3.2. Computer aided analysis

A SVM based classification model was generated from a
database consisting of 128 samples ofΔSco2

andΔSo2
maps

with 64 samples of confirmed metastatic regions and 64 sam-
ples of healthy livers. The model was generated using a SVM
engine implemented with an EMD based kernel [11]. We
validated the consistency of our model with the “leave-one-
out” technique onΔSco2

alone,ΔSo2
alone, and bothΔSco2

and ΔSo2
. The best results were obtained with the ΔSco2

features: 6.77% error and 94.03% precision.
Then, 32 samples of ΔS maps that were acquired during

the early metastases growth phase were classified. In all of
those samples, there were no visible metastases in the anatom-
ical images (T2-weighted) at that point in time (between days
10-15 after metastases cells injection). Out of the 32 sam-
ples, 11 were confirmed as metastases at later time points us-
ing anatomical images of the same position, and 21 samples
showed a healthy liver. Out of these 21 negative samples, 9
samples had “metastatic-like” ΔS maps when observed with
the naked eye. All 32 samples were classified according to
the generated model and validated later by MRI or by histol-
ogy. Our model achieved 84.38% accuarcy, 80% precision,
and 72.73% recall. These results are better than the “naked
eye” decisions regarding metastases existence at early time
points, where metastases are not detectable in anatomical im-
ages.
The diagnosis support system automatically inspected the

fMRI slices and enhanced suspicious regions based on the
generated model. Representative results are shown in Fig. 4.
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Fig. 4. Representative example of automatic metastases diag-
nosis. (a) Anatomical image, (b) ΔSco2

map, (c) ΔSo2
map

of mouse liver with suspected metastases (yellow arrow in a);
ΔS values as indicated in the color bar in Fig. 1. Computer
analysis results of “metastatic-like” regions (encircled areas
in b and c) included the suspected region in a.

4. CONCLUSION

This paper presents a novel method and system for early
detection of liver metastases using computerized analysis of
fMRI images. The analysis uses histogram-based features-
vectors and an SVM classifier to produce a tumor model.
Our results indicate that histogram-based features are a

useful tool for computerized analysis of fMRI images. These
features have lower dimensionality than the pixels them-
selves, are less sensitive to the position of the fMRI response
in the sample, and are invariant to the diameter of the sample
due to normalization of the histogram by the total number
of pixels for each sample. Our classification method yields
better results than the “naked eye” decisions regarding metas-
tases existence at early time points, where metastases are not
detectable in anatomical images. The classification accuracy
is high (84.38%) and the number of false-positive samples is
much lower than using manual analysis (2 vs. 9 samples with
the model vs. human inspection).
In the future, we will explore methods for completely au-

tomatic detection of metastases using their actual ROIs in-
stead of rectangular ones, using higher-level features, and ad-
vanced classification techniques. We also plan to improve the
results with larger training and testing datasets.
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